Accepted Papers
Active & Online learning
Frequency-aware Truncated methods for Sparse Online LearningHidekazu Oiwa, Shin Matsushima, Hiroshi Nakagawa
Discriminative Experimental Design
Yu Zhang, Dit-Yan Yeung
Manifold Coarse Graining for Online Semi-Supervised Learning
Mehrdad Farajtabar, Amirreza Shaban, Hamid Rabiee, Mohammad Hossein Rohban
Active learning with evolving streaming data
Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, Geoff Holmes
Online Structure Learning for Markov Logic Networks
Tuyen N. Huynh, Raymond J. Mooney
Applications of Data Mining
Image Classification for Age-related Macular Degeneration Screening using Hierarchical Image Decompositions and Graph MiningMohd Hanafi Ahmad Hijazi, Chuntao Jiang, Frans Coenen, Yalin Zheng
Label Noise-Tolerant Hidden Markov Models for Segmentation: Application to ECGs
Benoît Frénay, Gaël De Lannoy, Michel Verleysen
Resource-Aware On-Line RFID Localization Using Proximity Data
Christoph Scholz, Stephan Doerfel, Martin Atzmueller, Andreas Hotho, Gerd Stumme
PTMSearch: a Greedy Tree Traversal Algorithm for finding Protein Post-Translational Modifications in Tandem Mass Spectra
Attila Kertész-Farkas, Beáta Reiz, Michael P. Myers, Sándor Pongor
A Novel Framework for Locating Software Faults Using Latent Divergences
Shounak Roychowdhury, Sarfraz Khurshid
Classification & Bayesian Networks
Ancestor Relations in the Presence of Unobserved VariablesPekka Parviainen, Mikko Koivisto
A Robust Ranking Methodology based on Diverse Calibration of AdaBoost
Róbert Busa-Fekete, Balázs Kégl, Tamás Éltető, György Szarvas
Efficiently approximating Markov tree bagging for high-dimensional density estimation
François Schnitzler, Sourour Ammar, Philippe Leray, Pierre Geurts, Louis Wehenkel
A boosting approach to multiview classification with cooperation
Sokol Koço, Cécile Capponi
ShareBoost: Boosting for Multi-View Learning with Performance Guarantees
Jing Peng, Costin Barbu, Guna Seetharaman, Wei Fan, Xian Wu, Kannappan Palaniappan
Classification & Prediction
Differentiating Code from Data in x86 BinariesRichard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, Bhavani Thuraisingham
Focused Multi-task Learning Using Gaussian Processes
Gayle Leen, Jaakko Peltonen, Samuel Kaski
On the Stratification of Multi-Label Data
Konstantinos Sechidis, Grigorios Tsoumakas, Ioannis Vlahavas
Learning Monotone Nonlinear Models using the Choquet Integral
Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczyński, Eyke Hüllermeier
Compact Coding for Hyperplane Classifiers in Heterogeneous Environment
Hao Shao, Bin Tong, Einoshin Suzuki
Clustering
The Minimum Code Length for Clustering Using the Gray CodeMahito Sugiyama, Akihiro Yamamoto
Fast approximate text document clustering using Compressive Sampling
Laurence A. F. Park
Clustering Rankings in the Fourier Domain
Stéphan Clémençon, Romaric Gaudel, Jérémie Jakubowicz
Is there a best quality metric for graph clusters?
Hélio Almeida, Dorgival Guedes, Wagner Meira Jr, Mohammed Zaki
a-Clusterable Sets
Gerasimos S. Antzoulatos, Michael N. Vrahatis
Data Mining Theory & Foundations
The VC-Dimension of SQL Queries and Selectivity Estimation Through SamplingMatteo Riondato, Mert Akdere, Ugur Çetintemel, Stanley B. Zdonik, Eli Upfal
Smooth Receiver Operating Characteristics (smROC) Curves
William Klement, Peter Flach, Nathalie Japkowicz, Stan Matwin
Active Supervised Domain Adaptation
Avishek Saha, Piyush Rai, Hal Daumé III, Suresh Venkatasubramanian, Scott DuVall
Comparing Apples and Oranges - Measuring Differences between Data Mining Results
Nikolaj Tatti, Jilles Vreeken
Learning Good Edit Similarities with Generalization Guarantees
Aurélien Bellet, Amaury Habrard, Marc Sebban
Ensemble Learning
Tracking Concept Change with Incremental Boosting by Minimization of the Evolving Exponential LossMihajlo Grbovic, Slobodan Vucetic
Aggregating Independent and Dependent Models to Learn Multi-label Classifiers
Elena Montañés, José Ramón Quevedo, Juan José del Coz
Multi-Label Ensemble Learning
Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang
On oblique random forests
Bjoern H. Menze, B. Michael Kelm, Daniel N. Splitthoff, Ullrich Koethe, Fred A. Hamprecht
Novel Fusion Methods for Pattern Recognition
Muhammad Awais, Fei Yan, Krystian Mikolajczyk, Josef Kittler
Feature Selection, Extraction, and Construction
Feature Selection Stability Assessment based on the Jensen-Shannon DivergenceRoberto Guzmán-Martínez, Rocío Alaiz-Rodriguez
Fast projections onto L1,q-norm balls for grouped feature selection
Suvrit Sra
A Novel Stability based Feature Selection Framework for k-means Clustering
Dimitrios Mavroeidis, Elena Marchiori
Constrained Laplacian Score for semi-supervised feature selection
Khalid Benabdeslem, Mohammed Hindawi
Feature Selection for Transfer Learning
Selen Uguroglu, Jaime Carbonell
Frequent Sets and Patterns
Fast and Memory-Efficient Discovery of the Top-k Relevant Subgroups in a Reduced Candidate SpaceHenrik Grosskreutz, Daniel Paurat
Constrained Logistic Regression for Discriminative Pattern Mining
Rajul Anand, Chandan K. Reddy
Mining Actionable Partial Orders in Collections of Sequences
Robert Gwadera, Gianluca Antonini, Abderrahim Labbi
Efficient Mining of Top Correlated Patterns Based on Null-Invariant Measures
Sangkyum Kim, Marina Barsky, Jiawei Han
Non-Redundant Subgroup Discovery in Large and Complex Data
Matthijs van Leeuwen, Arno Knobbe
Graphical & Hidden Markov Models
Fourier-Information Duality in the Identity Management ProblemXiaoye Jiang, Jonathan Huang, Leonidas Guibas
An Alternating Direction Method for Dual MAP LP Relaxation
Ofer Meshi, Amir Globerson
Restricted Deep Belief Networks for Multi-View Learning
Yoonseop Kang, Seungjin Choi
A Spectral Learning Algorithm for Finite State Transducers
Borja Balle, Ariadna Quattoni, Xavier Carreras
Common Substructure Learning of Multiple Graphical Gaussian Models
Satoshi Hara, Takashi Washio
Learning from Social and Information Networks I
Peer and Authority Pressure in Information-Propagation ModelsAris Anagnostopoulos, George Brova, Evimaria Terzi
Active Learning of Model Parameters for Influence Maximization
Tianyu Cao, Xindong Wu, Tony Xiaohua Hu, Song Wang
A Shapley value Approach for Influence Attribution
Panagiotis Papapetrou, Aristides Gionis, Heikki Mannila
Influence and Passivity in Social Media
Daniel M. Romero, Wojciech Galuba, Sitaram Asur, Bernardo A. Huberman
Learning Recommendations in Social Media Systems By Weighting Multiple Relations
Boris Chidlovskii
Learning from Social and Information Networks II
Toward a Fair Review-Management SystemTheodoros Lappas, Evimaria Terzi
Learning to Infer Social Ties in Large Networks
Wenbin Tang, Honglei Zhuang, Jie Tang
A Community-Based Pseudolikelihood Approach for Relationship Labeling in Social Networks
Huaiyu Wan, Youfang Lin, Zhihao Wu, Houkuan Huang
Graph Evolution via Social Diffusion Processes
Dijun Luo, Chris Ding, Heng Huang
Mining Research Topic-related Influence between Academia and Industry
Dan He
Learning from Time Series Data
Motion segmentation by a model-based clustering approach of incomplete trajectoriesVasileios Karavasilis, Konstantinos Blekas, Christophoros Nikou
Unsupervised Modeling of Partially Observable Environments
Vincent Graziano, Jan Koutnik, Jürgen Schmidhuber
Artemis: Assessing the Similarity of Event-interval Sequences
Orestis Kostakis, Panagiotis Papapetrou, Jaakko Hollmén
Discovering Temporal Bisociations for Linking Concepts over Time
Corrado Loglisci, Michelangelo Ceci
ShiftTree: an Interpretable Model-Based Approach for Time Series Classification
Balázs Hidasi, Csaba Gáspár-Papanek
Matrix and Tensor Analysis
Tensor Factorization Using Auxiliary InformationAtsuhiro Narita, Kohei Hayashi, Ryota Tomioka, Hisashi Kashima
Bayesian Matrix Co-Factorization: Variational Algorithm and Cramer-Rao Bound
Jiho Yoo, Seungjin Choi
Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval
Suvrit Sra, Anoop Cherian
Link prediction via matrix factorization
Aditya Krishna Menon, Charles Elkan
Multi-Subspace Representation and Discovery
Dijun Luo, Feiping Nie, Chris Ding, Heng Huang
Model Selection & Statistical Learning
A selecting-the-best method for budgeted model selectionGianluca Bontempi, Olivier Caelen
Aspects of Semi-Supervised and Active Learning in Conditional Random Fields
Nataliya Sokolovska
Sampling Table Configurations for the Hierarchical Poisson-Dirichlet Process
Changyou Chen, Lan Du, Wray Buntine
Comparing Probabilistic Models for Melodic Sequences
Athina Spiliopoulou, Amos Storkey
Multimodal nonlinear filtering using Gauss-Hermite Quadrature
Hannes P. Saal, Nicolas Heess, Sethu Vijayakumar
Preference Learning and Ranking
Direct Policy Ranking with Robot Data StreamsRiad Akrour, Marc Schoenauer, Michèle Sebag
Multiview Semi-Supervised Learning for Ranking Multilingual Documents
Nicolas Usunier, Massih-Reza Amini, Cyril Goutte
Preference-based policy iteration: Leveraging preference learning for reinforcement learning
Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, Sang-Hyeun Park
Rule-Based Active Sampling for Learning to Rank
Rodrigo Silva, Marcos Gonçalves, Adriano Veloso
A Geometric Approach to Find Nondominated Policies to Imprecise Reward MDPs
Valdinei Freire da Silva, Anna Helena Reali Costa
Reinforcement learning
Preference elicitation and inverse reinforcement learningConstantin Rothkopf, Christos Dimitrakakis
Sparse Kernel-SARSA(\lambda) with an Eligibility Trace
Matthew Robards, Peter Sunehag, Scott Sanner, Bhaskara Marthi
Analyzing and Escaping Local Optima in Planning as Inference for Partially Observable Domains
Pascal Poupart, Tobias Lang, Marc Toussaint
Lagrange Dual Decomposition for Finite Horizon Markov Decision Processes
Thomas Furmston, David Barber
Reinforcement Learning Through Global Stochastic Search in N-MDPs
Matteo Leonetti, Luca Iocchi, Subramanian Ramamoorthy
Relational learning and Inductive Logic Programming
Correcting Bias in Statistical Tests for Network Classifier EvaluationTao Wang, Jennifer Neville, Brian Gallagher, Tina Eliassi-Rad
Abductive Plan Recognition by Extending Bayesian Logic Programs
Sindhu Raghavan, Raymond J. Mooney
Learning the Parameters of Probabilistic Logic Programs from Interpretations
Bernd Gutmann, Ingo Thon, Luc De Raedt
Gaussian Logic for Predictive Classification
Ondřej Kuželka, Andrea Szabóová, Matěj Holec, Filip Železný
Learning First-Order Definite Theories via Object-Based Queries
Joseph Selman, Alan Fern
Semi-Supervised and Transductive Learning
Learning from Label Proportions by Optimizing Cluster Model SelectionMarco Stolpe, Katharina Morik
Adaptive Boosting for Transfer Learning using Dynamic Updates
Samir Al-Stouhi, Chandan K. Reddy
Learning from Partially Annotated Sequences
Eraldo R. Fernandes, Ulf Brefeld
Constraint selection for semi-supervised topological clustering
Kais Allab, Khalid Benabdeslem
COSNet: a Cost Sensitive Neural Network for Semi-supervised Learning in Graphs
Alberto Bertoni, Marco Frasca, Giorgio Valentini
Spectral Clustering & Graph Mining
Unifying Guilt-by-Association Approaches: Theorems and Fast AlgorithmsDanai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau, Hsing-Kuo Kenneth Pao, Christos Faloutsos
Privacy Preserving Semi-Supervised Learning for Labeled Graphs
Hiromi Arai, Jun Sakuma
Eigenvector Sensitive Feature Selection For Spectral Clustering
Yi Jiang, Jiangtao Ren
DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors
Stephan Günnemann, Brigitte Boden, Thomas Seidl
Parallel Structural Graph Clustering
Madeleine Seeland, Simon A. Berger, Alexandros Stamatakis, Stefan Kramer
Supervised Learning I
Generalized Agreement Statistics over Fixed Group of ExpertsMohak Shah
Larger Residuals, Less Work: Active Document Scheduling for Latent Dirichlet Allocation
Mirwaes Wahabzada, Kristian Kersting
Datum-Wise Classification: A Sequential Approach to Sparsity
Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, Patrick Gallinari
Transfer Learning With Adaptive Regularizers
Ulrich Rückert, Marius Kloft
Network Regression with Predictive Clustering Trees
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Sašo Džeroski
Learning from Inconsistent and Unreliable Annotators by a Gaussian Mixture Model and Bayesian Information Criterion
Ping Zhang, Zoran Obradovic
Supervised Learning II
Regularized Sparse Kernel Slow Feature AnalysisWendelin Böhmer, Steffen Grünewälder, Hannes Nickisch, Klaus Obermayer
Kernels for Link Prediction with Latent Feature Models
Canh Hao Nguyen, Hiroshi Mamitsuka
PerTurbo: a new classification algorithm based on the spectrum perturbations of the Laplace-Beltrami operator
Nicolas Courty, Thomas Burger, Johann Laurent
Fast Support Vector Machines for Structural Kernels
Aliaksei Severyn. Alessandro Moschitti
Building Sparse Support Vector Machines for Multi-Instance Classification
Zhouyu Fu, Guojun Lu, Kai Ming Ting, Dengsheng Zhang
Text Mining & Recommender Systems
Expertise finding using topic models -- the expert--tag--topic modelGregor Heinrich
Analyzing Word Frequencies in Large Text Corpora using Inter-arrival Times and Bootstrapping
Jefrey Lijffijt, Panagiotis Papapetrou, Kai Puolamäki, Heikki Mannila
An Analysis of Probabilistic Methods for Top-N Recommendation in Collaborative Filtering
Nicola Barbieri, Giuseppe Manco
A Game Theoretic Framework for Data Privacy Preservation in Recommender Systems
Maria Halkidi, Iordanis Koutsopoulos
iDVS: An Interactive Multi-Document Visual Summarization System
Yi Zhang, Dingding Wang, Tao Li
Unsupervised Learning & dimensionality reduction
Minimum Neighbor Distance Estimators of Intrinsic DimensionGabriele Lombardi, Alessandro Rozza, Claudio Ceruti, Elena Casiraghi, Paola Campadelli
Online Clustering of High-Dimensional Trajectories under Concept Drift
Georg Krempl, Zaigham Faraz Siddiqui, Myra Spiliopoulou
Linear Discriminant Dimensionality Reduction
Quanquan Gu, Zhenhui Li, Jiawei Han
The Minimum Transfer Cost Principle for Model-Order Selection
Mario Frank, Morteza Haghir Chehreghani, Joachim Buhmann
Higher Order Contractive auto-encoder
Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, Xavier Glorot